Sequent Calculus Representations for Quantum Circuits

نویسنده

  • Cameron Beebe
چکیده

When considering a sequent-style proof system for quantum programs, there are certain elements of quantum mechanics that we may wish to capture, such as phase, dynamics of unitary transformations, and measurement probabilities. Traditional quantum logics which focus primarily on the abstract orthomodular lattice theory and structures of Hilbert spaces have not satisfactorily captured some of these elements. We can start from ‘scratch’ in an attempt to conceptually characterize the types of proof rules which should be in a system that represents elements necessary for quantum algorithms. This present work attempts to do this from the perspective of the quantum circuit model of quantum computation. A sequent calculus based on single quantum circuits is suggested, and its ability to incorporate important conceptual and dynamic aspects of quantum computing is discussed. In particular, preserving the representation of phase helps illustrate the role of interference as a resource in quantum computation. Interference also provides an intuitive basis for a non-monotonic calculus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Uniform Procedure for Converting Matrix Proofs into Sequent-Style Systems

We present a uniform algorithm for transforming machine-found matrix proofs in classical, constructive, and modal logics into sequent proofs. It is based on unified representations of matrix characterizations, of sequent calculi, and of prefixed sequent systems for various logics. The peculiarities of an individual logic are described by certain parameters of these representations, which are su...

متن کامل

Representing the Classical Sequent Calculus in the π-calculus

We study the π-calculus, enriched with pairing and non-blocking input, and define a notion of type assignment that uses the type constructor →. We encode the circuits of the calculus X into this variant of π, and show that all reduction (cut-elimination) and assignable types are preserved. Since X enjoys the Curry-Howard isomorphism for Gentzen’s calculus LK, this implies that all proofs in LK ...

متن کامل

Basic Logic and Quantum Entanglement

As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But...can it be made explicit? In other words, is it possible to find the connective "entanglement" in a...

متن کامل

Optimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits

There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....

متن کامل

Types for quantum computing

This thesis is a study of the construction and representation of typed models of quantum mechanics for use in quantum computation. We introduce logical and graphical syntax for quantum mechanical processes and prove that these formal systems provide sound and complete representations of abstract quantum mechanics. In addition, we demonstrate how these representations may be used to reason about...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016